Лекция 3. Основы глубокого обучения
3.1. Введение
Одна из наиболее обсуждаемых концепций машинного обучения как в академическом сообществе, так и в средствах массовой информации - это развивающаяся область глубокого обучения. Идея нейронных сетей, а впоследствии и глубокого обучения, черпает вдохновение в биологическом представлении человеческого мозга (или любого другого существа с мозгом, если на то пошло).
В основе персептрона лежат биологические нейроны (рис. 3.1), соединяющие несколько входов (сигналы к дендритам), комбинируя и накапливая эти входные данные (как это происходит в собственном теле клетки) и производя выходной сигнал, напоминающий аксон.
[image:]
Рис. 3.1: Схема биологического нейрона
Нейронные сети расширяют эту аналогию, комбинируя сеть искусственных нейронов для создания нейронной сети, в которой информация передается между нейронами (синапсами), как показано на рис. 3.2. Каждый из этих нейронов обучается разным функциям входного сигнала, что дает сети нейронов чрезвычайно разнообразную репрезентативную силу.
За последние 6–7 лет наблюдается экспоненциальный рост популярности и применения глубокого обучения. Хотя основы нейронных сетей можно проследить до конца 1960-х годов [Iva68], архитектура AlexNet [KSH12c] вызвала взрыв интереса к глубокому обучению, когда она легко выиграла конкурс классификации изображений Imagenet 2012 года [Den + 09b] с 5-слойной сверточной нейронной сетью. С тех пор глубокое обучение было применено во множестве областей и в большинстве из них достигло высочайшего уровня производительности.
[image:]
Рис. 3.2: Схема искусственного нейрона (персептрона)
Цель этой главы - познакомить читателя с глубоким обучением. К концу этой главы читатель должен понять основы нейронных сетей и способы их обучения. Мы начинаем эту главу с обзора алгоритма персептрона, который был представлен в гл. 2, с которой зародились нейронные сети. Мы затем представим классификатор многослойного персептрона (MLP), наиболее упрощенную форму нейронных сетей с прямой связью. Далее следует обсуждение основных компонентов обучения MLP. Этот раздел содержит введение в прямое и обратное распространение и объясняет общий процесс обучения нейронных сетей.
Затем мы переходим к исследованию основных компонентов архитектуры: функций активации, показателей ошибок и методов оптимизации. После этого раздела мы расширяем концепцию MLP на область глубокого обучения, где вводим дополнительные соображения при обучении глубоких нейронных сетей, такие как время вычислений и регуляризация. Наконец, мы завершаем практическое обсуждение общих подходов к фреймворку глубокого обучения.
[image:]
Рис. 3.3: Шаговая функция идеально подходит для персептрона; однако отсутствие ненулевого градиента делает его бесполезным для нейронных сетей.

3.2. Объяснение алгоритма персептрона
Глубокое обучение в его простейшей форме - это эволюция алгоритма персептрона, обученного с помощью оптимизатора на основе градиента. В главе 2 был представлен алгоритм персептрона. В этом разделе подчеркивается важность алгоритма персептрона как одного из строительных блоков глубокого обучения.
Алгоритм персептрона - один из самых ранних алгоритмов контролируемого обучения, восходящий к 1950-м годам. Подобно биологическому нейрону, алгоритм персептрона действует как искусственный нейрон, имеющий несколько входов и веса, связанные с каждым входом, каждый из которых затем дает выход. Это показано на рис. 3.6b.
Основная форма алгоритма персептрона для двоичной классификации:
y (x1, ..., xn) = f (w1x1 + ... + wnxn). (3.1)
Мы индивидуально взвешиваем каждое xi с помощью изученного веса wi, чтобы отобразить входной x ∈ Rn в выходное значение y, где f (x) определяется как ступенчатая функция, показанная ниже и на рис. 3.3.
f (v) = 0, если v <0,5
 1, если v ≥ 0,5 (3.2)

Шаговая функция принимает на входе действительное число и выдает двоичное значение 0 или 1, что указывает на положительную или отрицательную классификацию, если оно превышает порог 0,5.
3.2.1. Смещение
Алгоритм персептрона изучает гиперплоскость, разделяющую два класса. Однако в этот момент разделяющая гиперплоскость не может сместиться от начала координат, как показано на рис. 3.4a. Такое ограничение гиперплоскости вызывает проблемы, как мы можем видеть на рис. 3.4b.
[image:]
Рис. 3.4: (a) Алгоритм персептрона может разделить два класса линией, проходящей через начало координат. (b) Хотя данные линейно разделимы, алгоритм персептрона не может разделить данные. Это связано с тем, что разделяющая плоскость должна проходить через начало координат.
Одно из решений состоит в том, чтобы гарантировать, что наши данные доступны для изучения, если мы нормализуем метод, чтобы сосредоточить его вокруг источника в качестве потенциального решения, чтобы облегчить эту проблему, или добавить член смещения b в уравнение. 3.1, позволяя гиперплоскости классификации отойти от начала координат, как показано на рис. 3.5.
[image:]
Рис. 3.5: (a) Алгоритм персептрона может разделить два класса после центрирования данных в начале координат. Обратите внимание на расположение начала координат на рисунке. (b) Смещение позволяет алгоритму персептрона перемещать разделяющую плоскость, что позволяет ему правильно классифицировать точки данных.
Мы можем записать персептрон со смещением как:
y (x1, ..., xn) = f (w1x1 + ... + wnxn + b) (3.3)
В качестве альтернативы мы можем рассматривать b как дополнительный вес w0, привязанный к постоянному входу 1, как показано на рис. 3.6b, и записывать его как:
y (x1, ..., xn) = f (w1x1 + ... + wnxn + w0) (3.4)
Некоторые авторы описывают это как добавление входной константы x0 = 1, позволяющей изученному значению для b = w0 перемещать границу решения от начала координат. Мы продолжим писать термин предвзятость пока как напоминание о его важности; однако термин «предвзятость» подразумевается, даже если он не написан, что обычно имеет место в академической литературе. Переходя к векторным обозначениям, мы можем переписать уравнение. 3.3 как:
y(x) = f(wx+b). (3.5)

[image:]
Рис. 3.6: Диаграмма классификатора персептрона. (а) Диаграмма классификатора персептрона, нарисованная без смещения. (б) Диаграмма персептрона, включая смещение
Член смещения - это заученный вес, который снимает ограничение, согласно которому разделяющая гиперплоскость должна проходить через начало координат.
Процесс обучения для алгоритма персептрона заключается в изменении весов w для достижения нулевой ошибки на обучающем наборе. Например, предположим, что нам нужно разделить наборы точек A и B. Начиная со случайных весов w, мы постепенно улучшаем границу на каждой итерации с целью достижения E (w, b) = 0. Таким образом, мы минимизируем ошибку следующей функции по всему обучающему набору.
E (w) = ∑x∈A (1 - f (wx + b)) + ∑x∈B f (wx + b) (3.6)
3.2.2. Линейная и нелинейная разделимость
Два набора данных линейно разделимы, если их разделяет одна граница решения. Например, два множества, A и B, линейно разделимы, если для некоторого порога принятия решения t каждый xi ∈ A удовлетворяет неравенству ∑iwixi ≥ t и каждый yj ∈ B удовлетворяет ∑iwiyi < t. И наоборот, два набора нельзя линейно разделить, если разделение требует нелинейной границы решения.
Если мы применим персептрон к нелинейно разделяемому набору данных, как набор данных, показанный на рис. 3.7a, то мы не сможем разделить данные, как показано в 3.7b, поскольку мы можем узнать только три параметра, w1, w2, и b.
К сожалению, большинство данных, с которыми мы обычно сталкиваемся в NLP (Natural Language Processing - область знаний, где изучаются естественные языки) и речи, очень нелинейны. Один из вариантов (как мы видели в главе 2) - создать нелинейные комбинации входных данных и использовать их как функции в модели. Другой вариант - изучить нелинейные функции необработанных данных, что является основной целью нейронных сетей.
[image:]
Рис. 3.7: (a) Нелинейно разделяемый набор данных (обобщение функции XOR). (б) Результат обучения алгоритма персептрона на нелинейно разделяемом наборе данных в (а). Линейная граница не может правильно классифицировать данные
3.3. Многослойный персептрон (нейронные сети)
Многослойный персептрон (MLP) связывает несколько персептронов (обычно называемых нейронами) в сеть. Нейроны, которые принимают одинаковые входные данные, группируются в слой персептронов. Вместо использования ступенчатой ​​функции, как было показано ранее, мы подставляем дифференцируемую нелинейную функцию. Применение этой нелинейной функции, обычно называемой функцией активации или нелинейностью, позволяет выходному значению быть нелинейной, взвешенной комбинацией его входных данных, тем самым создавая нелинейные функции, используемые следующим слоем. Напротив, использование линейной функции в качестве функции активации ограничивает сеть только способностью изучать линейные преобразования входных данных. Кроме того, показано, что любое количество уровней с линейной функцией активации может быть сокращено до двухуровневого MLP [HSW89].
MLP состоит из взаимосвязанных нейронов и, следовательно, является нейронной сетью. В частности, это нейронная сеть с прямой связью, поскольку существует одно направление потока данных через сеть (без циклов - повторяющиеся соединения). На рис. 3.8 показан простейший многослойный персептрон. MLP должен содержать входной и выходной слой и, хотя бы один скрытый слой. Кроме того, слои также «полностью связаны», что означает, что выход каждого слоя связан с каждым нейроном следующего слоя. Другими словами, параметр веса изучается для каждой комбинации входного нейрона и выходного нейрона между слоями.
[image:]
Рис. 3.8: Иллюстрация многослойной сети персептронов с входным слоем, одним скрытым слоем, содержащим два нейрона, и выходным слоем.
Скрытый слой h является результатом h = g (W (1) x), где g (x) - функция активации. Выход сети yˆ = f (W(2)h), где f (x) - функция вывода, такая как ступенчатая или сигмовидная функция.
Скрытый слой обеспечивает два выхода, h1 и h2, которые могут быть нелинейными комбинациями их входных значений x1 и x2. Выходной слой взвешивает свои входы из скрытого слоя, теперь потенциального нелинейного отображения, и делает свой прогноз.
3.3.1. Обучение MLP
Обучение весов MLP (и, соответственно, нейронной сети) опирается на четыре основных компонента.
Шаги по обучению нейронной сети:
1. Прямое распространение: вычислите выходной сигнал сети для примера ввода.
2. Вычисление ошибки: вычислите ошибку предсказания между сетевым предсказанием и целью.
3. Обратное распространение: вычислить градиенты в обратном порядке относительно входных данных и весов.
4. Обновление параметров: используйте стохастический градиентный спуск, чтобы обновить веса сети, чтобы уменьшить ошибку для этого примера.
Мы рассмотрим каждый из этих компонентов с помощью сети, показанной на рис. 3.8.
3.3.2. Прямое распространение
Первым шагом в обучении MLP является вычисление выходных данных сети для примера из набора данных. Мы используем сигмовидную функцию, представленную σ (x), как функцию активации для MLP. Его можно рассматривать как плавную ступенчатую функцию, и она показана на рис. 3.14. Кроме того, она является непрерывно дифференцируемой, что является желательным свойством для обратного распространения. Определение сигмовидной функции:
σ (х) = 1/1 + е-х. (3.7)

Шаг прямого распространения очень похож на шаги 3 и 4 алгоритма персептрона. Цель этого процесса - вычислить текущий выходной сигнал сети для конкретного примера x, при этом каждый выход подключен как вход к нейрону(ам) следующего слоя.
Для удобства записи и вычислений веса слоя объединены в единую матрицу весов, Wl, представляющую набор весов в этом слое, где l - номер слоя. Линейное преобразование, выполняемое вычислением уровня для каждого веса, является вычислением внутреннего произведения между x и Wl. Этот тип часто называют «полностью связанным», «внутренним продуктом» или «линейным» слоем, потому что вес связывает каждый вход с каждым выходом. Вычисление прогноза yˆ для примера x, где h1 и h2 представляют соответствующие выходы уровня, становится:
f (v) = σ (v)
h1 = f (W1x + b1)
h2 = f (W2h1 + b2)
yˆ = h2. (3.8)

Обратите внимание, что смещение b1 является вектором, потому что с каждым нейроном в слое связано значение смещения. В выходном слое всего один нейрон, поэтому смещение b2 является скаляром.
К концу шага прямого распространения у нас есть прогноз выходных данных для нашей сети. После обучения сети новый пример оценивается путем прямого распространения.
3.3.3. Вычисление ошибок
На этапе вычисления ошибок проверяется, насколько хороша наша сеть работает на приведенном примере. Мы используем среднеквадратичную ошибку (MSE) в качестве функции потерь, использованной в этом примере (рассматривая обучение как проблему регрессии). MSE определяется как:
E (yˆ, y) = 1/2 ∑ni= 1 (yˆi −yi)2. (3.9)
1/2 упрощает обратное распространение. С одним выходом это количество уменьшается до:
E (yˆ, y) = ½ (yˆ − y)2. (3.10)
Функции ошибок будут подробно рассмотрены в разд. 3.4.2.
Эта функция ошибок обычно используется для задач регрессии, измеряя среднее значение квадратичных ошибок для цели. Функция возведения в квадрат заставляет ошибку быть неотрицательной и функционирует как квадратичная потеря со значениями, близкими к нулю, давая полиноминально меньшую ошибку, чем значения находится дальше от нуля.
На этапе вычисления ошибки создается скалярное значение ошибки для обучающего примера.
Мы поговорим больше о функциях ошибок в разд. 3.4.2.
На рис. 3.9 показан шаг прямого распространения и распространение ошибок для выходного нейрона рис. 3.8.
[image:]
Рис. 3.9: Выходной нейрон на рис. 3.12, показывающий полное вычисление выходных сигналов до и после активации.
3.3.4. Обратное распространение
Во время прямого распространения прогноз yˆ вычисляется для входа x и параметров сети θ. Чтобы улучшить наш прогноз, мы можем использовать стохастический градиентный спуск (stochastic gradient descent - SGD, чтобы уменьшить ошибку всей сети. Определение ошибки для каждого из параметров может быть выполнено с помощью цепного правила исчисления. Мы можем использовать цепное правило исчисления, чтобы вычислить производные каждого слоя (и операции) в порядке, обратном прямому распространению, как показано на рис. 3.10.
[image:]
Рис. 3.10: Визуализация обратного распространения
В нашем предыдущем примере прогноз yˆ зависел от W2. Мы можем вычислить ошибку предсказания относительно W2, используя цепное правило:
∂E/∂W2 = ∂E/∂yˆ · ∂yˆ/∂W2 (3.11)
Цепное правило позволяет нам вычислять градиент ошибки для каждого из обучаемых параметров θ, что позволяет нам обновлять сеть, используя стохастический градиентный спуск.
Мы начинаем с вычисления градиента на выходном слое относительно прогноза.
∇yˆE (yˆ, y) = ∂E/∂ yˆ = (yˆ − y) (3.12)
Затем мы можем вычислить ошибку по параметрам уровня 2.
В настоящее время у нас есть градиент «после активации», поэтому нам нужно вычислить градиент до активации:
∇a2E = ∂E/∂a2 = ∂E/∂ yˆ · ∂ yˆ/ ∂a2 = ∂E/∂ yˆ ⊙ f`(W2h1 + b2), (3.13)
где значок ⊙ - означает поэлементное умножение.
Теперь мы можем вычислить ошибку относительно W2 и b2.
∇W2E = ∂E/∂W2 = ∂E/∂ yˆ · ∂ yˆ/∂a2· ∂a2/∂W2 = ∂E/∂a2hT1 (3.14)
∇b2E = ∂E/∂b2 = ∂E/∂ yˆ · ∂ yˆ/∂a2·∂a2/∂b2 = ∂E/∂a2 (3.15)
Мы также можем вычислить ошибку для входа в слой 2 (выход после активации уровня 1).
∇h1E = ∂E/∂h1 = ∂E/∂ yˆ · ∂ yˆ/∂a2· ∂a2/∂h1 = W2 ∂E/∂a2 (3.16)
Затем мы повторяем этот процесс, чтобы вычислить ошибку для параметров W1 и b1 уровня 1, тем самым распространяя ошибку назад по всей сети.
На рис. 3.11 показан шаг обратного распространения для выходного нейрона сети, показанной на рис. 3.8. Мы оставляем численные исследования и эксперименты для упражнений с блокнотом.
[image:]
Рис. 3.11: Обратное распространение через выходной нейрон
3.3.5. Обновление параметров
Последний шаг в процессе обучения - обновление параметров. После получения градиентов по всем параметрам обучения в сети мы можем выполнить один шаг SGD, обновив параметры для каждого уровня в соответствии со скоростью обучения α.
θ = θ −α∇θE (3.17)
За простоту представленного здесь правила обновления SGD приходится платить. Значение α особенно важно для SGD и влияет на скорость сходимости, качество сходимости и даже способность сети вообще сходиться. Слишком малая скорость обучения, и сеть сходится очень медленно и потенциально может застрять в локальных минимумах около инициализации случайного веса. Если скорость обучения слишком большая, веса могут расти слишком быстро, становиться нестабильными и вообще не сойтись. Кроме того, выбор скорости обучения зависит от комбинации таких факторов, как глубина сети и метод нормализации. Простота представленной здесь сети облегчает утомительный выбор скорости обучения, но для более глубоких сетей этот процесс может быть намного сложнее. Важность выбора хорошей скорости обучения привела к появлению целой области исследований алгоритмов оптимизации градиентного спуска. Мы обсудим некоторые из этих методов подробнее в разд. 3.4.3.
Общий процесс описан в алгоритме 1.
Алгоритм 1: обучение нейронной сети
Данные: обучающий набор данных D = {(x1, y1), (x1, y2), ..., (xn, yn)}
Нейронная сеть с l слоем с обучаемыми параметрами
θ = ({W1, ... Wl}, {b1, ... bl})
Функция активации f (v)
Скорость обучения α
Функция ошибок E (vˆ, v)
Инициализировать параметры нейронной сети θ = ({W1, ... Wl}, {b1, ... bl})
for e ←− 1 to e epochs do
for (x,y) in D do
for i ←− 1 to l do
if i=1 then
hi−1 = x
ai = Wihi−1 +bi
hi = f(ai)
yˆ = hl
error = E(yˆ,y)
ghi+1 = ∇yˆE(yˆ,y)
for i ←− l to 1 do
gai = ∇aiE = ghi+1 ◦ f`(ai)
∇WiE = gaihi−1
∇biE = gaighi = ∇hi−1E = WiT gai
θ = θ −α∇θE

3.3.6. Универсальная аппроксимационная теорема
Архитектуры нейронных сетей применяются для решения множества задач из-за их репрезентативной мощности. Универсальная аппроксимационная теорема [HSW89] показала, что нейронная сеть с прямой связью с одним слоем может аппроксимировать любую непрерывную функцию только с ограниченными на количество нейронов в слое.1)
Эту теорему часто резюмируют как «нейронные сети - универсальные аппроксиматоры». Хотя это технически верно, теорема не дает никаких гарантий относительно вероятности изучения конкретной функции.
Топография пространства параметров становится все более разнообразной по мере усложнения задач машинного обучения. Обычно он невыпуклый с множеством локальных минимумов. Простой подход градиентного спуска может затруднить изучение конкретной функции.
Вместо этого несколько слоев нейронов располагаются последовательно и обучаются совместно с обратным распространением. Затем сеть слоев изучает несколько нелинейных функций, чтобы соответствовать набору обучающих данных. Под глубоким обучением понимается множество последовательно соединенных слоев нейронной сети.
3.4. Глубокое обучение
Термин «глубокое обучение» несколько неоднозначен. Во многих кругах глубокое обучение является термином ребрендинга нейронных сетей или используется для обозначения нейронных сетей со многими последовательными (глубокими) слоями. Однако количество слоев, позволяющих отличить глубокую сеть от мелкой, является относительным. Например, будет ли нейронная сеть, показанная на рис. 3.12, считаться глубокой или мелкой?
[image:]
Рис. 3.12: Нейронная сеть прямого распространения с двумя скрытыми слоями

1) Универсальная аппроксимационная теорема была первоначально доказана для архитектур нейронных сетей с использованием сигмоидной функции активации, но впоследствии было показано, что она применима ко всем полностью связанным сетям [Cyb89b, HSW89].

В общем, глубокие сети по-прежнему являются нейронными сетями (обученными с помощью обратного распространения, изучающими иерархические абстракции входных данных, оптимизированными с использованием обучения на основе градиентов), но обычно с большим количеством слоев. Отличительной чертой глубокого обучения является его применение к проблемам, ранее недоступным традиционным методам, такими как меньшими нейронными сетями, как MLP, показанная на рис. 3.8. Более глубокие сети позволяют изучать большее количество уровней иерархических абстракций для входных данных, что позволяет изучать функции более высокого порядка в более сложных областях.
Однако в этой книге мы используем термин «глубокое обучение», как описано выше - нейронная сеть с более чем одним скрытым слоем.
Гибкость нейронных сетей делает их такими привлекательными. Нейронные сети применяются для решения многих типов задач, учитывая простоту и эффективность методов обратного распространения и оптимизации на основе градиента. В этом разделе мы вводим дополнительные методы и соображения, которые влияют на проектирование архитектуры и обучение модели для глубоких нейронных сетей (deep neural network - DNN). В частности, мы фокусируемся на функциях активации, функциях ошибок, методах оптимизации и подходах к регуляризации.
3.4.1. Функции активации
[image:]
Рис. 3.13: Шаговая функция, выполненная идеально для персептрона, однако ее производная делает ее плохой для методов градиентного спуска.
При вычислении градиента выходного слоя становится очевидным, что пошаговая функция не совсем полезна при попытке вычислить градиент. Как показано на рис. 3.13, производная везде равна 0, что означает, что любой градиентный спуск бесполезен. Поэтому мы хотим использовать нелинейную функцию активации, которая обеспечивает значимую производную в процессе обратного распространения ошибки.

3.4.1.1. Сигмоид
Лучшая функция для использования в качестве функции активации - это логистическая сигмоида:
σ (х) = 1/(1 + е – х) (3.18)
Сигмовидная функция - полезная активация по разным причинам. Как видно из графика на рис. 3.14, эта функция действует как непрерывная функция сжатия, которая ограничивает ее выход в диапазоне (0,1).
[image:]
Рис. 3.14: Сигмовидная функция активации и ее производная
Она похожа на ступенчатую функцию, но имеет плавную непрерывную производную, идеальную для методов градиентного спуска. Он также имеет нулевой центр, создавая простую границу решения для задач двоичной классификации, а производная сигмовидной функции математически удобна:
σ`(x) = σ (x) (1 − σ (x)). (3.19)
Однако у сигмовидной функции есть некоторые нежелательные свойства.
· Насыщение сигмовидных градиентов на концах кривой (очень близко к σ(x) ← 0 или σ (x) ← 1) приведет к тому, что градиенты будут очень близки к 0. Поскольку обратное распространение продолжается для последующих слоев, небольшой градиент умножается на результат постактивации предыдущего слоя, заставляя его быть еще меньше. Для предотвращения этого может потребоваться тщательная инициализация сетевых весов или другие стратегии регуляризации.
· Выходы сигмоида сосредоточены не вокруг 0, а вокруг 0,5. Это вводит несоответствие между слоями, потому что выходные данные не находятся в согласованном диапазоне. Это часто называют «внутренним ковариатным сдвигом», о котором мы поговорим позже.

3.4.1.2. Гиперболический тангенс
Функция tanh - еще одна распространенная функция активации. Она также действует как функция сжатия, ограничивая свой выход в диапазоне (-1,1), как показано на рис. 3.15.
f (x) = tanh (x) (3.20)
Его также можно рассматривать как масштабированную и смещенную сигмовидную кишку.
tanh (x) = 2 ∗ σ (2x) −1 (3.21)
Функция tanh решает одну из проблем, связанных с нелинейностью сигмовидной формы, поскольку она имеет нулевой центр. Однако у нас все еще есть та же проблема с насыщением градиента на крайних точках функции, показанной на рис. 3.16.
[image:]
Рис. 3.15: Функция активации Tanh и ее производная
3.4.1.3. ReLU[image:]
[image:]
Рис. 3.16: Функция активации ReLU и ее производная
Выпрямленный линейный блок (ReLU) - это простая, быстрая функция активации, обычно встречается в компьютерном зрении. Функция представляет собой линейный порог, определяемый как:
f (х) = макс (0, х). (3.22)
Эта простая функция стала популярной, потому что она показала более быструю сходимость по сравнению с сигмоидой и tanh, возможно, из-за ненасыщающего градиента в положительном направлении.
Помимо более быстрой сходимости, функция ReLU намного быстрее в вычислительном отношении. Функции сигмоида и tanh требуют экспонент, которые занимают гораздо больше времени, чем простая операция max.
Одним из недостатков простоты обновления градиента, равного 0 или 1, является то, что это может привести к «умиранию» нейронов во время обучения. Если через нейрон распространяется большой градиент, выход нейрона может быть настолько затронут, что обновление не позволит нейрону когда-либо обновиться снова. Некоторые показали, что до 40% нейронов в сети могут «умереть» с функцией активации ReLU, если скорость обучения установлена ​​слишком высокой.
3.4.1.4. Другие функции активации
Другие функции активации были включены для ограничения эффектов, описанных ранее, показанных на рис. 4.17.
· Жесткий тан
Функция жесткого tanh в вычислительном отношении дешевле, чем функция tanh. Однако она вновь вводит недостаток градиентного насыщения в крайних точках.
f (x) = max (−1, min (1, x)) (3.23)
· Дырявый ReLU
Leaky ReLU представляет параметр α, который позволяет небольшим градиентам распространяться в обратном направлении, когда активация не активна, тем самым устраняя «смерть» нейронов во время обучения.
f (x) = x, если x ≥ 0
αx, если x <0. (3.24)

· PRELU
Параметрический выпрямленный линейный блок, аналогичный Leaky ReLU, использует параметр α для масштабирования крутизны отрицательной части входа; однако альфа-параметр изучается для каждого нейрона (удваивая количество изученных весов).
Обратите внимание, что, когда значение α = 0, это функция ReLU, а когда α фиксировано, это эквивалентно Leaky ReLU.
f (x) = x, если x ≥ 0
αx, если x <0. (4.25)

· ELU
ELU - это модификация ReLU, которая позволяет среднему значению активаций приближаться к 0, что, следовательно, потенциально ускоряет сходимость.
f (x) = x, если x> 0
α (ex −1), если x ≤ 0. (3.26)

· Использовать полностью
Функция maxout использует другой подход к функциям активации. Это отличается от поэлементного применения функции к каждому выходу нейрона. Вместо этого он изучает две весовые матрицы и принимает наивысший результат для каждого элемента.
f (x) = max (w1x + b1, w2x + b2) (3.27)
[image:]
Рис. 3.17: Дополнительная функция активации. (а) Жесткий тан. (б) Дырявый ReLU. (c) PReLU. (d) ELU
3.4.1.5. Softmax
Концепция сжатия сигмоидной функции расширена на несколько классов посредством функции softmax. Функция softmax позволяет нам выводить категориальное распределение вероятностей по K классам.
f (xi) = exi /∑j exj (3.28)
Мы можем использовать softmax для создания вектора вероятностей в соответствии с выходными данными этого нейрона. В случае задачи классификации, которая имеет K = 3 класса, последний уровень нашей сети будет полностью связанным слоем с выходом трех нейронов. Если мы применим функцию softmax к выходу последнего слоя, мы получим вероятность для каждого класса, назначив класс каждому нейрону. Расчет softmax показан на рис. 3.18.
Вероятности softmax могут стать очень маленькими, особенно когда классов много и прогнозы становятся более надежными. В большинстве случаев функция softmax на основе журналов используется, чтобы избежать ошибок переполнения. Функция softmax является частным случаем для функций активации, поскольку она редко рассматривается как активация, когда функция softmax сопоставляет выход сети реального значения с распределением вероятностей по количеству классов, редко являясь функцией активацией между слоями. Поэтому softmax часто рассматривается как последний уровень сети для мультиклассовой классификации, а не как функция активации.
[image:]
Рис. 3.18: Выходные данные нейронной сети могут быть сопоставлены с задачей классификации нескольких классов (здесь показаны три класса).
3.4.1.6. Иерархический Softmax
По мере того, как количество классов начинает расти, как это часто бывает в языковых задачах, вычисление функции softmax может стать дорогостоящим. Например, в задаче языкового моделирования наш выходной слой может пытаться предсказать, какое слово будет следующим в последовательности. Следовательно, выходом сети будет распределение вероятностей по количеству терминов в нашем словаре, которое может составлять тысячи или сотни тысяч. Иерархический Softmax [MB05] аппроксимирует функцию softmax, представляя функцию в виде двоичного дерева с глубиной, дающей менее вероятные активации классов. Дерево должно быть сбалансировано, поскольку сеть обучается, но оно будет иметь глубину log2(K), где K - количество классов, что означает, что для вычисления выходной вероятности класса необходимо оценивать только состояния log2 (K).

3.4.2. Функции потерь
Еще одним важным аспектом обучения нейронных сетей является выбор функций ошибок, которые часто называют степенью точности / критерием оптимизации. Выбор функции ошибки зависит от типа решаемой проблемы. Для задачи классификации мы хотим предсказать распределение вероятности по набору классов. Однако в задачах регрессии мы хотим предсказать конкретное значение, а не распределение. Мы представляем здесь основные, наиболее часто используемые функции потерь.
3.4.2.1. Среднеквадратичная (L2) ошибка
Среднеквадратичная ошибка (MSE) вычисляет квадрат ошибки между предсказанием классификации и целью. Тренировка с ним сводит к минимуму разницы в величине.
Одним из недостатков MSE является то, что он подвержен выбросам, поскольку разница возведена в квадрат.
E (yˆ, y) = 1/n ∑ni = 1 (yi −yˆi)2 (3.29)
До сих пор мы использовали MSE или L2 для его простоты в качестве потерь для задач бинарной классификации, классифицируя их как 0, если yˆ ≥ 0,5, или 1, если yˆ < 0,5; однако он обычно используется для задач регрессии и может быть легко расширен для простых задач, с которыми мы работали.
3.4.2.2. Средняя абсолютная (L1) ошибка
Средняя абсолютная ошибка дает меру абсолютной разницы между целевым значением и прогнозом. Его использование сводит к минимуму величину ошибки без учета направления, что делает его менее чувствительным к выбросам.
E (yˆ, y) = 1/n∑ni = 1 | yi −yˆi | (3.30)
3.4.2.3. Вероятность отрицательного логарифма
Отрицательное логарифмическое правдоподобие (Negative log likelihood - NLL) - это наиболее распространенная функция потерь, используемая для задач мультиклассовой классификации. Это также известно, как потеря кросс-энтропии мультиклассов.
Softmax обеспечивает распределение вероятностей по выходным классам. Вычисление энтропии - это средневзвешенная логарифмическая вероятность возможных событий или классификаций в задаче мультиклассовой классификации. Это приводит к увеличению потерь, поскольку распределение вероятностей прогноза отклоняется от целевой метки.
E (yˆ, y) = −1/n ∑ni = 1 (yi log (yˆi) - (1 − yi) log (1 − yˆi)) (3.31)
3.4.2.4. Потеря на петли
Потери на петлях - это классификация потерь с максимальным запасом, взятая из потерь алгоритма машины опорных векторов (Support vector machine – SVM). Он пытается разделить точки данных между классами, увеличивая расстояние между ними. Хотя она не дифференцируема, она выпуклая, что позволяет использовать ее как функцию потерь.
E (yˆ, y) =∑ni = 1 max (0, 1 − yiyˆi) (3.32)
3.4.2.5. Убыток Кульбака – Лейблера (KL)
Кроме того, мы можем оптимизировать функции, такие как KL-дивергенция, которая измеряет метрику расстояния в непрерывном пространстве. Это полезно для таких задач, как генеративные сети с непрерывным распределением выходных данных. Ошибка KL-дивергенции может быть описана следующим образом:
E (yˆ, y) = 1/n∑ni = 1DKL (yi || yˆi) =
 1/n∑ni = 1 (yi · log (yi)) – 1/n ∑ni = 1(yi · log (yˆi)) (3.33)

3.4.3. Методы оптимизации
Процесс обучения нейронных сетей основан на методах градиентного спуска, в частности SGD. Однако, как мы видели в предыдущем разделе, SGD может вызвать множество нежелательных трудностей в процессе обучения. Мы рассмотрим дополнительные методы оптимизации в дополнение к SGD и связанные с ними преимущества. Мы рассматриваем все обучаемые параметры, включая веса и смещения, как θ.
3.4.3.1. Стохастический градиентный спуск
Как представлено в гл. 2, стохастический градиентный спуск - это процесс обновления набора весов в направлении градиента для уменьшения ошибки. В алгоритме SGD правило обновления было простой формой:
θt + 1 = θt −α∇θE. (3.34)
где θ представляет собой обучаемые параметры, α - скорость обучения, а ∇θE - градиент ошибки по отношению к параметрам.
3.4.3.2. Импульс
Одна проблема, которая обычно возникает с SGD, заключается в том, что есть области пространства функций с длинными неглубокими оврагами, ведущими к минимумам. SGD будет колебаться взад и вперед по оврагу, потому что градиент будет указывать на самый крутой градиент на одной из сторон, а не в направлении минимумов. Таким образом, SGD может привести к медленной сходимости.
Импульс - это одна из модификаций SGD для более быстрого перемещения цели к минимумам. Уравнение обновления параметра для импульса:
vt = γvt − 1 + η∇θE
θt + 1 = θt –vt (3.35)

где θt представляет параметр на итерации t.
Momentum, вдохновленный физикой, вычисляет вектор скорости, фиксирующий совокупное направление, которое давали предыдущие градиенты. Этот вектор скорости масштабируется дополнительным гиперпараметром η, который указывает на то, насколько большой вклад кумулятивной скорости может повлиять на обновление.
3.4.3.3. Адаград
Adagrad [DHS11] - это метод оптимизации на основе адаптивного градиента. Он адаптирует скорость обучения к каждому параметру в сети, делая более существенные обновления редких параметров и меньшие обновления частых. Это делает его особенно полезным при изучении проблем с разреженными данными [PSM14]. Возможно, наиболее значительным преимуществом adagrad является то, что он избавляет от необходимости настраивать скорость обучения вручную. Однако это происходит за счет наличия дополнительного параметра для каждого параметра в сети.
Уравнение адаграда определяется следующим образом:
gt, i = ∇θE (θt, i)
θt + 1, i = θt, i – η/√(Gt, ii + ε) ◦ gt, i (4.36)

где gt - градиент в момент времени t вдоль каждого компонента θ, Gt - диагональная матрица суммы до t временных шагов прошлых градиентов относительно. ко всем параметрам θ на диагонали, η - это общая скорость обучения, а ε - сглаживающий член (обычно, 1e− 8), который не дает уравнению делиться на ноль.
Главный недостаток adagrad заключается в том, что накопление квадратов градиентов является положительным, что приводит к увеличению суммы, снижению скорости обучения и прекращению дальнейшего обучения модели. Для решения этой проблемы были введены дополнительные варианты, такие как Adadelta [Zei12].
3.4.3.4. RMS-Prop
RMS-prop [TH12], разработанная Хинтоном, также была введена для устранения недостатков adagrad. Он также делит скорость обучения на средний квадрат градиентов, но также уменьшает эту величину экспоненциально.
E [g2]t = ρE [g2] t − 1 + (1 − ρ) g2t
θt + 1 = θt – η/√(E [g2] t + ε) gt (3.37)

где ρ = 0,9 и скорость обучения η = 0,001 предлагается в представленной лекции.
3.4.3.5. ADAM
Адаптивная оценка момента, называемая Адамом [KB14], является еще одним методом адаптивной оптимизации. Он также вычисляет скорость обучения для каждого параметра, но помимо сохранения экспоненциально убывающего среднего значения предыдущих квадратов градиентов, аналогично импульсу, он также включает среднее значение прошлых градиентов mt.
mt = β1mt − 1 + (1 − β1) gt
vt = β2vt − 1 + (1 − β2) g2t
mˆt = mt /(1 − βt1)
vˆt = vt /(1 – βt2)
θt + 1 = θt – η /√(vˆt + ε) mˆt (3.38)

Эмпирические результаты показывают, что Адам хорошо работает на практике по сравнению с другими методами оптимизации на основе градиента.
Хотя метод Адама был популярным, появилась некоторая критика первоначального доказательства, показывающего сходимость к субоптимальным минимумам в некоторых ситуациях [BGW18, RKK18]. Каждая работа предлагает решение проблемы, однако последующие методы остаются менее популярными, чем исходная техника Адама.
3.5. Обучение модели
Достижение наилучшей ошибки обобщения (наилучшей производительности на тестовом наборе) - основная цель машинного обучения, которая требует поиска наилучшего положения в спектре между переобучением и недостаточным подбором. Глубокое обучение более склонно к переобучению.
При наличии множества свободных параметров относительно легко найти путь для достижения E = 0.
Было показано, что многие стандартные архитектуры глубокого обучения можно обучить случайной маркировке обучающих данных и достичь E = 0 [Zha + 16].
В отличие от переобучения, для многих сложных функций существуют различные локальные минимумы, которые могут не быть оптимальным решением, и обычно устанавливаются локальные минимумы. Глубокое обучение основывается на нахождении решения невыпуклой задачи оптимизации, которое является NP-полным для общей невыпуклой функции [MK87]. На практике мы видим, что вычисление глобального минимума для хорошо регуляризованной глубокой сети по большей части не имеет значения, потому что локальные минимумы обычно примерно схожи и приближаются к глобальному минимуму по мере увеличения сложности модели [Cho + 15a]. Однако в плохо упорядоченной сети локальные минимумы могут привести к большим потерям, что нежелательно.
Лучшая модель - это та, которая достигает наименьшего разрыва между потерей обучения и потерей проверки; однако выбор правильной конфигурации архитектуры и методики обучения может оказаться утомительным. Здесь мы обсуждаем типичные методы обучения и регуляризации для улучшения обобщения модели.
3.5.1. Ранняя остановка
Один из наиболее практичных способов предотвратить переобучение модели - это «ранняя остановка». Ранняя остановка зависит от предположения: «По мере уменьшения ошибки проверки должна уменьшаться и ошибка теста». При обучении мы вычисляем ошибку проверки в отдельных точках (обычно в конце каждой эпохи) и сохраняем модель с наименьшей ошибкой проверки, как показано на рис. 3.19.
[image:]
Рис. 3.19: Точка ранней остановки показана, когда ошибка валидации начинает отличаться от ошибки обучения.
Кривая обучения показывает, что ошибка обучения будет продолжать уменьшаться до нуля. Однако модель начинает хуже работать на проверочном наборе, поскольку она не соответствует обучающим данным. Следовательно, чтобы поддерживать обобщение модели на тестовом наборе, будет выбрана модель (изученные параметры модели), которая лучше всего показала себя на нашем тестовом наборе. Здесь также важно указать, что для этого требуется набор данных, который разделен на наборы для обучения, проверки и тестирования без наложения. Набор тестов следует хранить отдельно от обучения и проверки, поскольку в противном случае это ставит под угрозу целостность модели.
Простота ранней остановки делает ее наиболее часто используемой формой регуляризации в глубоком обучении.
3.5.2. Исчезающие / взрывающиеся градиенты
При обучении нейронных сетей со многими слоями с обратным распространением возникает проблема исчезающих / увеличивающихся градиентов. Во время обратного распространения мы умножаем градиент на результат каждого последующего слоя. Это означает, что градиент может становиться все больше и больше, если E > 1 или ∇E < 1, и меньше, если градиент 1< ∇E <0, поскольку он умножается на каждый последующий слой. Практически это означает, что в случае исчезающих градиентов очень небольшая часть ошибки распространяется обратно на более ранние уровни сети, что приводит к очень медленному обучению или его отсутствию. Для взрывных градиентов это приводит к переполнению весов, что препятствует обучению. Чем глубже становится нейронная сеть, тем серьезнее становится проблема.
В случае увеличения градиентов простое практическое решение состоит в том, чтобы «обрезать» градиенты, устанавливая максимум значений градиента на каждом шаге обратного распространения, чтобы контролировать рост весов. Мы вернемся к этой теме при обращении к повторяющимся нейронным сетям.
3.5.3. Градиентный метод для полного набора и мини-партии
Пакетный градиентный спуск - это вариант градиентного спуска, который оценивает ошибку для всего набора данных перед обновлением модели, накапливая ошибку после каждого примера. Это устраняет некоторые проблемы SGD, такие как шум, вносимый в каждом примере, но частота обновлений может вызвать более высокую дисперсию между эпохами обучения, что может создать значительные различия в моделях.
Этот подход редко используется на практике с глубоким обучением.
Подходящим компромиссом между этими двумя стратегиями является мини-пакетный градиентный спуск. Мини-пакетный градиентный спуск разбивает набор данных на пакеты, и модель накапливает ошибку в мини-пакете перед выполнением обновления. Такой подход дает ряд преимуществ, в том числе:
· Уменьшение шума при каждом обновлении модели за счет накопления градиентов из нескольких обучающих примеров.
· Более высокая эффективность, чем у SGD
· Более быстрое обучение за счет использования преимуществ матричных операций для сокращения времени ввода-вывода
Одним из недостатков градиентного спуска для мини-пакета является добавление размера мини-пакета в качестве гиперпараметра. Размер мини-пакета, который для удобства часто называют просто «размером пакета», обычно устанавливается на основе аппаратных ограничений модели, чтобы не превышать объем памяти ЦП или ГП. Кроме того, размеры пакета обычно равны степени 2 (8, 16, 32 и т. д.) из-за распространенных аппаратных реализаций. В общем, желательно достичь баланса с небольшим размером партии, обеспечивающим более быструю сходимость, и с большим размером партии, которая сходится медленнее, но с более точными оценками.
Рекомендуется просмотреть кривые обучения для нескольких разных размеров пакетов, чтобы выбрать лучший размер.
3.5.4. Регуляризация
На практике управление ошибкой обобщения достигается за счет создания большой модели, которая соответствующим образом регуляризована [GBC16a, Bis95]. Регуляризация может принимать разные формы. Некоторые методы нацелены на снижение емкости моделей за счет штрафов за аномальные параметры в целевой функции путем добавления члена регуляризации.
E (W; yˆ, y) = E (yˆ, y) + Ω (W) (3.39)
где W - веса сети. Некоторые подходы сосредоточены на ограничении информации, предоставляемой в сеть (например, отсев) или нормализации вывода слоев (пакетная нормализация), в то время как другие могут вносить изменения в данные напрямую. Здесь мы исследуем множество методов регуляризации, и обычно предлагается использовать несколько методов в каждой проблеме.
3.5.4.1. Регуляризация L2: снижение веса
Одним из наиболее распространенных методов регуляризации является метод регуляризации L2, обычно называемый уменьшением веса. Спад веса добавляет член регуляризации к функции ошибок, которая подталкивает веса к началу координат, штрафуя большие вариации веса. Спад веса вводит скаляр α, который штрафует веса, перемещающиеся от начала координат. Это работает как гауссовский априор с нулевым средним для цели обучения, ограничивая свободу сети изучать большие веса, которые могут быть связаны с переобучением. Установка этого параметра становится очень важной, потому что, если модель слишком ограничена, она может быть не в состоянии обучаться.
Регуляризация L2 определяется как:
Ω (w) = α/2 WTW ​​ (3.40)
Тогда функцию потерь можно описать как:
 	E (W; yˆ, y) = α/2 WTW ​​+ E (yˆ, y). (3.41)
С градиентом:
∇WE (W; yˆ, y) = αW + ∇WE (yˆ, y) (3.42)
И обновление параметра становится:
W = W − ε (αW + ∇WE (yˆ, y)), (3.43)
где ε - скорость обучения.
3.5.4.2. Регуляризация L1
Менее распространенным методом регуляризации является регуляризация L1. Эта техника также действует как штраф за вес. Регуляризатор - это сумма абсолютных значений весов:
Ω (w) = α ∑ | wi | (3.44)
По мере обучения многие веса станут равными нулю, что приведет к разреженности весов модели. Это часто используется при выборе функций, но не всегда желательно для нейронных сетей.
3.5.4.3. Отсев
Возможно, вторым по распространенности методом регуляризации в глубоком обучении является Dropout [Sri + 14]. Отсев - простой и очень эффективный метод уменьшения переобучения нейронных сетей. Это связано с идеей, что нейронные сети могут иметь очень хрупкие связи от входа к выходу. Эти усвоенные связи могут работать на тренинг, но не обобщать на тестовые данные. Dropout направлен на исправление этой тенденции путем случайного «отбрасывания» соединений в процессе обучения нейронной сети, так что прогноз не может зависеть от какого-либо отдельного нейрона во время обучения, как показано на рис. 3.20.
Применение исключения к сети включает применение случайной маски, выбранной из распределения Бернулли с вероятностью p. Эта матрица маски применяется поэлементно (умножение на 0) во время операции прямой связи. Во время шага обратного распространения градиенты для каждого параметра и параметры, которые были замаскированы градиентом, устанавливаются на 0, а другие градиенты масштабируются на 1/(1 – p).
[image:]
Рис. 3.20: Выпадение при применении к полносвязной нейронной сети. (а) Стандартная двухслойная (скрытая) нейронная сеть. (б) Стандартная двухслойная (скрытая) нейронная сеть с выпадением
3.5.4.4. Многозадачное обучение
Во всех задачах машинного обучения мы оптимизируем конкретную метрику ошибок или функцию. Поэтому, чтобы одновременно эффективно выполнять различные задачи, мы обычно обучаем модель для каждой метрики, а затем объединяем, линейно комбинируем или соединяем их каким-либо другим значимым образом, чтобы хорошо выполнять нашу общую коллекцию задач. Поскольку глубокое обучение достигается с помощью вычислений и спуска на основе градиентов, мы можем одновременно оптимизировать различные функции оптимизации. Это позволяет нашему базовому представлению изучить общее представление, которое может выполнять несколько задач. В последнее время многозадачное обучение стало широко используемым подходом. Добавление вспомогательных задач может помочь улучшить сигнал градиента до изученных параметров, что приведет к повышению качества выполнения общей задачи [Rud17a].
3.5.4.5. Совместное использование параметров
Другой формой регуляризации является совместное использование параметров. До сих пор мы рассматривали только полносвязные нейронные сети, которые учат индивидуальный вес для каждого входа.
В некоторых задачах входные данные достаточно похожи, поэтому нежелательно изучать разные наборы параметров для каждой задачи, а лучше делиться полученными знаниями в нескольких местах. Этого можно достичь, разделив набор весов для разных входов. Совместное использование параметров не только полезно в качестве регуляризатора, но также дает множество преимуществ для обучения, например, уменьшенная память (одна копия набора весов) и уменьшенное количество уникальных параметров модели.
Одним из подходов, использующих совместное использование параметров, является сверточная нейронная сеть, которую мы исследуем в гл. 6.
3.5.4.6. Нормализация партии
В процессе обучения в обучающих примерах может быть много вариаций, приводящих к появлению шума в тренировочном процессе. Один из способов, который мы рекомендовали во введении, - это нормализовать наши данные перед обучением. Нормализация уменьшает количество, которое необходимо сместить весам для соответствия конкретному примеру, сохраняя те же свойства распределения. При глубоком обучении у нас есть несколько уровней вычислений со скрытыми значениями, которые передаются на последующие уровни. Выходные данные каждого из этих слоев, вероятно, будут ненормализованными входными данными, и распределение, вероятно, будет часто меняться в процессе обучения. Этот процесс обычно называют «внутренним ковариантным сдвигом». Пакетная нормализация [IS15] направлена ​​на уменьшение внутреннего ковариантного сдвига в сети за счет нормализации выходных данных промежуточных уровней во время обучения. Это ускоряет процесс обучения и позволяет повысить скорость обучения без риска расхождения.
Пакетная нормализация достигает этого путем нормализации выходных данных предыдущего скрытого слоя на среднее значение и дисперсию пакета (мини-пакета). Эта нормализация, однако, повлияет на фазу вывода, и, таким образом, пакетная нормализация захватывает скользящее среднее среднего и дисперсии и фиксирует их во время вывода.
Для входной мини-партии β = {x1: m} мы узнаем параметры γ и β с помощью:
μβ = 1/m ∑mi = 1xi
σ2β = 1/m∑mi = 1(xi - μβ)2
xˆi = (xi - μβ)/√(σ2β + ε)
yi = γxˆi + β. (3.45)

3.5.5. Выбор гиперпараметров
Большинство методов обучения и методов регуляризации имеют определенные параметры конфигурации обучения, связанные с ними. Например, для каждой модели необходимо выбрать скорость обучения, импульс, вероятность отсева и снижение веса.
Выбор наилучшего сочетания этих гиперпараметров может оказаться сложной задачей.
3.5.5.1. Ручная настройка
Ручная настройка гиперпараметров рекомендуется при применении существующей модели к новому набору данных к существующей модели или новой модели к существующему набору данных. Ручной выбор помогает получить интуитивное представление о сети. Это может быть полезно для понимания того, приведет ли конкретный набор параметров к переобучению или недостаточному соответствию сети.
Рекомендуется отслеживать норму градиентов и то, как быстро потери модели сходятся или расходятся. В общем, скорость обучения является наиболее важным гиперпараметром, оказывающим наибольшее влияние на эффективную пропускную способность сети [GBC16b].
Выбор правильной скорости обучения для модели обеспечит хорошую сходимость, а ранняя остановка предотвратит переобучение модели обучающей выборке. Если скорость обучения слишком высока, большие градиенты могут привести к расхождению сети, предотвращая будущее обучение в некоторых случаях (даже когда скорость обучения становится ниже). Если скорость обучения слишком низкая, небольшие обновления замедлят процесс обучения, а также могут привести к тому, что модель упадет до локального минимума с высокой ошибкой обучения и обобщения.
3.5.5.2. Автоматическая настройка
Автоматический выбор гиперпараметров - гораздо более быстрый и надежный метод оптимизации конфигурации обучения. Поиск по сетке, представленный в гл. 2, это наиболее распространенный и простой метод. При поиске по сетке для каждого оптимизируемого параметра предоставляются однородные или логарифмические выборки, а модель обучается для каждой комбинации параметров. Этот подход эффективен, однако он требует значительное количество вычислительного времени для обучения набора моделей. Как правило, эту стоимость можно снизить, сначала исследуя большие диапазоны, а затем сужая набор параметров или диапазонов, выполняя еще один поиск по сетке с новыми диапазонами.
Случайный поиск гиперпараметров иногда более устойчив к нюансам обучения, поскольку некоторые комбинации гиперпараметров могут иметь кумулятивный эффект. Подобно поиску по сетке, случайный поиск выбирает значения в диапазоне поиска по сетке случайным образом, а не с равными интервалами. Это показало, что он стабильно превосходит поиск по сетке, поскольку в сетке гиперпараметров есть неисследованные пространства (при таком же количестве комбинаций параметров).
Как правило, большинство моделей, исследуемых с помощью поиска по сетке и случайного поиска, плохо сочетаются. Это можно в некоторой степени облегчить, установив соответствующие границы для поиска, полученные из ручного исследования, однако в идеале производительность модели может использоваться для определения следующего набора параметров. Для этого были введены различные процедуры выбора условных и байесовских гиперпараметров [SLA12].
3.5.6. Доступность и качество данных
Регуляризация является наиболее распространенным методом предотвращения переобучения, но ее также можно выполнить с увеличением объема данных. Данные - самый важный компонент любой модели машинного обучения. Хотя это может показаться очевидным, однако, это часто один из самых упускаемых из виду компонентов в реальных сценариях. Абстрактно нейронные сети учатся на опыте, с которым они сталкиваются. В бинарной классификации, например, приветствуются положительные пары пример-метка, а отрицательные пары не приветствуются. Настройка гиперпараметров нейронной сети обычно является лучшим подходящим шагом для уменьшения ошибки обобщения. Если между ошибкой обучения и обобщением все еще существует разрыв в производительности, может потребоваться увеличить объем данных (или в некоторых случаях качество).
Нейронные сети могут быть устойчивыми к некоторому уровню шума в наборе данных, и во время процесса обучения влияние выбросов обычно уменьшается. Однако ошибочные данные могут вызвать множество проблем. Низкая производительность модели в реальных приложениях может быть вызвана постоянно неверными метками или недостаточным количеством данных.
В реальных приложениях, если в процессе обучения наблюдается странное поведение, это может быть признаком несогласованности данных.
Обычно это проявляется одним из двух способов: переобучением или плохой сходимостью. В случае переобучения модель может выявить аномалию данных (например, наличие имени пользователя во многих негативных оценках).
Глубокое обучение, в частности, больше выигрывает от больших наборов данных, чем другие алгоритмы машинного обучения. Многие улучшения качества, достигнутые с помощью глубокого обучения, напрямую связаны с увеличением размера используемых наборов данных. Большие наборы данных могут действовать как метод регуляризации, чтобы предотвратить переоснащение модели конкретным примерам.
3.5.6.1. Увеличение данных
Один из самых простых способов повысить производительность модели - ввести больше обучающих данных. На практике это может быть дорого, но, если данные можно существенно расширить, этот метод может быть весьма полезным. Он может быть также особенно полезным для уменьшения чрезмерной подгонки к определенным аномалиям в наборе данных.
В случае изображений мы можем представить вращение и горизонтальное отражение как создание другой пары (X, y) без необходимости перемаркировывать какие-либо данные. Однако это не относится к числам, написанным от руки, где горизонтальный переворот может исказить интерпретацию метки (подумайте о 5 и 2). При включении дополнения данных обязательно помните об ограничениях примера и целевых отношений.
3.5.6.2. Упаковка
Упаковка - еще один метод, широко используемый в машинном обучении. Этот метод основан на идее, что мы можем уменьшить возможность переобучения моделей путем обучения нескольких моделей на разных частях обучающего набора. Образцы техники упаковки из исходного набора данных (с заменой), создание наборов вычитания, на которых обучаются модели. Модели должны изучать разные функции, поскольку они изучают разные части данных, что приводит к более низкой ошибке обобщения после объединения результатов каждой модели. Эта стратегия, как правило, менее часто используется на практике из-за времени вычисления моделей глубокого обучения, больших требований к данным глубоких моделей и введения других методов регуляризации (например, Dropout).
3.5.6.3. Состязательное обучение
Состязательные примеры - это примеры, предназначенные для того, чтобы классификатор неправильно классифицировал пример. Свободное пространство параметров нейронных сетей означает, что мы можем найти конкретные примеры ввода, которые могут использовать преимущества определенного набора обученных параметров в модели [GSS14].
Из-за свойств состязательных примеров мы можем использовать методы, используемые для создания состязательных примеров, для получения обучающих данных для сети, чтобы снизить вероятность успеха конкретной атаки, а также повысить надежность сети, предоставляя обучающие примеры, которые сосредоточиться на областях неопределенности в пространстве параметров.
3.5.7. Обсуждение
Вообще говоря, при настройке и обучении нейронных сетей, как правило, возникают четыре основных фактора:
· Доступность (и качество) данных
· Скорость вычислений
· Требования к памяти
· Качество
На практике обычно рекомендуется установить конечную цель и работать в обратном направлении, чтобы выяснить границы для каждого из ограничений.
Вообще говоря, начальный этап выбора модели гарантирует, что модель обладает способностью к надежному обучению. Это неизбежно приводит к переобучению обучающего набора данных, и в этот момент вводится регуляризация, чтобы уменьшить разрыв между потерей при обучении и потерей при проверке. На практике обычно нет необходимости (и нецелесообразно) начинать с нуля для каждого нового типа модели или задачи. Однако мы считаем, что постепенно усложнять лучше всего для высокодинамичных систем. Обычно начинают с эмпирически подтвержденных размеров архитектуры и применяют регуляризацию непосредственно с самого начала, однако лучше всего устранить сложность при возникновении непредвиденных ситуаций.
3.5.7.1. Вычисления и ограничения памяти
Несмотря на то, что глубокое обучение стало возможным благодаря многочисленным достижениям, одним из наиболее значительных факторов, способствовавших недавнему росту его внедрения, несомненно, являются усовершенствования оборудования, особенно специализированных компьютерных архитектур (GPU). Скорость обработки, достигаемая с помощью графических процессоров, была одним из наиболее важных факторов, способствующих популярности и практичности глубокого обучения. Повышение скорости за счет оптимизации матриц и возможности пакетных вычислений делают проблемы глубокого обучения идеальными для архитектур графических процессоров. Это развитие позволило перейти от поверхностных архитектур к глубоким сложным архитектурам, которые мы видим сегодня.
Большие наборы данных и архитектуры глубокого обучения привели к значительному повышению качества; однако вычислительные затраты на модели глубокого обучения обычно выше других методов машинного обучения, что необходимо учитывать в средах с ограниченными ресурсами (например, на мобильных устройствах). Требования модели также влияют на объем возможной оптимизации гиперпараметров. Маловероятно, что полный поиск по сетке может быть выполнен для моделей, обучение которых занимает дни или недели.
То же самое относится и к проблемам с памятью, поскольку для более крупных моделей требуется больше места. Хотя для уменьшения размеров модели вводятся многие методы квантования, такие как параметры квантования или использование значений параметров хеширования [Jou + 16b].
3.6. Неконтролируемое глубокое обучение
До сих пор мы рассмотрели примеры нейронных сетей с прямой связью для обучения с учителем. Теперь мы рассмотрим некоторые другие архитектуры, которые расширяют нейронные сети и глубокое обучение для неконтролируемых задач, рассматривая три распространенные неконтролируемые архитектуры: машины Больцмана с ограничениями (RBM), сети глубокого убеждения и автоэнкодеры. Мы будем опираться на наши текущие знания, анализируя несколько простых архитектур, которые выполняют задачи, отличные от классификации.
Как обсуждалось в гл. 2, модели без учителя изучают представления, и эти функции формируют данные без меток. Обычно это очень желательное свойство, потому что немаркированные данные легко доступны в больших объемах.
3.6.1. Энергетические модели
Энергетические модели (Energy-based models - EBM) черпают вдохновение из физики. Свободная энергия в системе может быть коррелирована с вероятностью наблюдения. Высокие энергии связаны с наблюдением с низкой вероятностью, а низкие энергии связаны с наблюдением с высокой вероятностью. Таким образом, в EBM цель состоит в том, чтобы изучить функцию энергии, которая приводит к низким энергиям для наблюдаемых примеров из набора данных и более высоким энергиям для ненаблюдаемых примеров [LeC + 06].
Для модели, основанной на энергии, распределение вероятностей определяется через функцию энергии, аналогично:
р (х) = е-Е (х) / Z (3.46)
где Z - нормировочная константа, обычно называемая статистической суммой.
Z = ∑xе − E (х) (3.47)
Статистическая сумма неразрешима для многих алгоритмов, поскольку она требует экспоненциальной суммы по всем возможным комбинациям входного x, как определено распределением P. Однако ее можно аппроксимировать, как мы увидим в случае RBM.
Изучение полезных функций требует изучения веса нашего ввода x, а также скрытой части h. Таким образом, вероятность наблюдения x может быть записана как:
P (x) = ∑hP (x, h) = ∑hе − E (х) / Z (3.48)
Бесплатная энергия определяется как:
F (x) = −log∑hе − E (х, h). (3.49)
и отрицательный градиент логарифма правдоподобия:
- log p (x)/∂ θ = ∂F (х)/∂ θ = −∑x~p (xˆ)(∂F (х)/∂ θ). (3.50)
Эта функция дает отрицательный градиент логарифма правдоподобия с двумя частями, обычно называемыми положительной фазой и отрицательной фазой. Положительная фаза увеличивает вероятность обучающих данных.
3.6.2. Ограниченные машины Больцмана
Ограниченная машина Больцмана [HS06] - это метод использования логлинейного марковского случайного поля (log-linear Markov random field - MRF) для моделирования функции энергии для обучения без учителя. RBM, как следует из названия, представляет собой ограниченную форму машины Больцмана [HS83], которая предоставляет некоторые полезные ограничения на архитектуру для улучшения управляемости и сходимости алгоритма. RBM ограничивает возможности подключения к сети, как показано на рис. 3.21, разрешая только видимые-скрытые соединения. Эта модификация позволяет использовать более эффективные алгоритмы обучения, такие как контрастная дивергенция на основе градиента.
[image:]
Рис. 3.21: Иллюстрация RBM. Обратите внимание, что это можно рассматривать как полностью связанный слой, как показано ранее, только с видимыми и скрытыми соединениями в сети. Для наглядности связи показаны только для одного видимого нейрона и одного скрытого нейрона.
Энергетическая функция RBM определяется как:
E (x, h) = −hTWx − cTx − bTh (3.51)
где W представляет матрицу весов, соединяющую видимые блоки и скрытые блоки, b - смещение скрытой единицы, а c - смещение вероятности для каждого xi.
Затем мы получаем вероятность из функции энергии:
p (x, h) = e − E (x, h)/Z (3.52)
Кроме того, если x, h ∈ {0,1}, мы можем дополнительно свести уравнение к следующему:
p (hi = 1 | x) = σ (bi + Wix)
p (xj = 1 | h) = σ (cj + WTj h) (3.53)
где σ - сигмовидная функция.
Таким образом, формула свободной энергии принимает следующий вид:
F (x) = −cTx − ∑ilog (1 + ebi + Wix) (3.54)
Затем мы можем вычислить градиенты для RBM как:
−∂ log p (x) / ∂Wi j = Ex [p (hi | x) xj] −σ (ci + Wix)
−∂ log p (x) / ∂bi = Ex [p (hi | x)] - σ (Wix)
−∂ log p (x) / ∂cj = Ex [p (xi | h)] - xj (3.55)
Когда у нас есть выборки функции p (x), мы можем запустить цепь Маркова с выборкой Гиббса.
3.6.3. Сети глубокого убеждения
Эффективность RBM показала, что эти архитектуры могут быть объединены и обучены вместе для создания сети глубоких убеждений (DBN) [HOT06b]. Каждая подсеть обучается изолированно, причем скрытый слой служит видимым слоем для следующей сети. Концепция такого послойного обучения привела к одному из первых эффективных подходов к глубокому обучению. Сеть глубоких убеждений показана на рис. 3.22.
[image:]
Рис. 3.22: Иллюстрация трехуровневой сети глубоких убеждений. Каждый слой rbm обучается индивидуально, начиная с самого нижнего слоя.
3.6.4. Автоэнкодеры
Автоэнкодер - это неконтролируемый подход глубокого обучения для уменьшения размерности каждого набора данных. Цель состоит в том, чтобы научиться более низкоразмерному представлению входных данных путем обучения одного кодировщика уменьшению размерности данных и другого декодера для воспроизведения входных данных. Автоэнкодер - это нейронная сеть, которая обучена воспроизводить ввод, а не предсказывать класс. Выученное представление содержит ту же информацию, что и ввод в меньшем сжатом векторе, изучая то, что является наиболее важным для реконструкции, чтобы минимизировать ошибку реконструкции.
Автоэнкодер разделен на два компонента: кодировщик и декодер. Кодировщик преобразует ввод x в вложение2) z. Декодер отображает кодировку z обратно на исходный вход x. Таким образом, для кодировщика нейронной сети Enc (x) и декодера Dec (z) потери L (среднеквадратичная ошибка) минимизируются следующим образом:

2) Этот вывод кодировщика иногда называют кодом, кодированием или внедрением.

z = Enc (x)
xˆ = Dec (z)
L (x, xˆ) = x − xˆ 2. (3.56)

Иллюстрация архитектуры автоэнкодера показана на рис. 3.23.
[image:]
Рис. 3.23: Архитектурная схема автокодировщика с шестью входными значениями и размером 4 мм.
Обучение автокодировщика очень похоже на классификацию других архитектур нейронных сетей, за исключением функции потерь. В то время как softmax ранее использовался для прогнозирования распределения по набору классов, теперь мы хотим получить результат с действительным знаком, который можно сравнить с входом. Это именно то, чего мы добились с целевой функцией MSE, которую мы использовали ранее и в основном используется для автокодировщиков.3)
Обучение этой сети такое же, как определено в алгоритме 1, но с некоторыми отличиями. Часто в автокодерах полезно связывать веса между кодером и декодером, с весами декодера W∗ = WT. В этом сценарии градиенты для весов W будут суммой двух градиентов, один от кодировщика и один от декодера.
В целом существует четыре типа автоэнкодеров:
· Неполные автоэнкодеры (стандарт)
· Редко

3) Если задача имеет входные данные с действительными значениями от 0 до 1, то кросс-энтропия Бернулли является лучшим выбором для целевой функции.

· Автоэнкодер с шумоподавлением
· Вариационные автоэнкодеры (VAE)
с вариантами каждого в зависимости от приложения.
3.6.4.1. Неполные автоэнкодеры
Неполный автоэнкодер является наиболее распространенным типом. Как показано на рис. 3.23, кодировщик сужает сеть, чтобы получить кодировку меньшего размера, чем входной.
Это работает как усвоенная техника уменьшения размерности. В идеале кодер учится сжимать наиболее важную информацию в кодировку, чтобы декодер мог восстановить ввод.
3.6.4.2. Удаление шумов в автоэнкодерах
Автоэнкодер с шумоподавлением принимает шумный вход и пытается декодировать до бесшумного выхода. Полученное представление будет менее чувствительно к шумовым возмущениям на входе.
Для шумовой функции4) N (x) автокодер можно описать как:
x’ = N (х)
z = Enc (x’)
xˆ’ = Dec (z)
L (x, xˆ’) = ||x − xˆ||2. (3.57)

3.6.4.3. Редкие автоэнкодеры
Редкие автоэнкодеры полагаются на минимальный порог активаций для обеспечения разреженности кодирования, а не на узкое место кодировщика. В этом сценарии кодировщик может иметь скрытые слои большего размера, чем вход, и разреженность может быть достигнута путем установки минимального порога для нейрона, обнуления выходов для нейрона ниже порога.
Один из способов обучения разреженного автокодировщика - это добавить к потерям член, например, L1, чтобы штрафовать активацию выхода в кодировщике. Для однослойного кодировщика потери функцию можно описать как L (x, xˆ) = x − xˆ 2 + λ ∑i| zi |, где λ задает вес разреженности.
3.6.4.4. Вариационные автоэнкодеры
Вариационные автоэнкодеры описывают скрытое пространство в терминах вероятностных распределений. Кодировка, которую до сих пор изучили

4) Примечание: в представленной ей функции шума отсутствуют изученные параметры.

автокодеры, описывает образец, взятый из некоторого скрытого пространства, определенного кодировщиком. Вместо того, чтобы каждое значение кодировки было представлено одним значением, как это делали до сих пор другие автокодеры, вариационный автокодер учится представлять кодировку как скрытые распределения. Параметры обычно изучаются в соответствии с распределением Гаусса, при этом необходимо изучить два параметра: среднее значение μ и стандартное отклонение σ. Декодер обучается на выборках, называемых «выборочные скрытые векторы», взятых из случайного распределения, параметризованного изученными значениями μ и σ. Схема ВАЭ представлена на рис. 3.24.
[image:]
Рис. 3.24: Вариационный автокодер изучает вектор средних значений μ и вектор стандартных отклонений σ. Выбранный латентный вектор z вычисляется по формуле z = μ + σ ◦ ε, где ε выбирается из нормального распределения, N (0,1)
Проблема возникает при попытке обратного распространения через стохастическую операцию выборки из распределения Гаусса. Вычисление происходит на пути прямого распространения, и градиент для выборки должен быть вычислен, чтобы получить градиенты для кодера; однако у стохастической операции нет четко определенного градиента. Уловка повторной параметризации [JGP16] предлагает способ переписать процедуру выборки, чтобы сделать стохастический элемент независимым от изученных параметров μ и σ. Выборка скрытой переменной z изменена с:
z = N (μ, σ2) (3.58)
к перепараметрированным:
z = μ + σε, (3.59)
где ε выбирается из нормального распределения, N (0,1). Теперь, хотя ε все еще является стохастическим, μ и σ не зависят от него при обратном распространении.
Обучение VAE требует оптимизации двух компонентов функции потерь. Первая составляющая - это ошибка реконструкции, которую мы оптимизировали для обычных автокодировщиков, а вторая часть - это KL-дивергенция. Потеря KL-дивергенции гарантирует, что изученное среднее значение и параметры дисперсии остаются близкими к N (0,1).
Общие потери определяются как:
L (x, xˆ) + ∑j DKL (qj(z | x) p (z)), (3.60)
где DKL - это KL-дивергенция, p (z) - априорное распределение, а qj (z | x) - изученное распределение.
3.6.5. Разреженное кодирование
Разреженное кодирование [Mai + 10] направлено на изучение набора базисных векторов для представления данных.
Эти базисные векторы затем можно использовать для формирования линейных комбинаций для представления входного x. Техника обучения базисных векторов для представления наших данных аналогична методам, подобным PCA, которые мы исследовали в гл. 2. Однако, используя разреженное кодирование, мы вместо этого изучаем чрезмерно полный набор, который позволит изучить множество шаблонов и структуры в данных.
Само по себе разреженное кодирование не является алгоритмом нейронной сети, но мы можем добавить штраф к нашей сети, чтобы обеспечить разреженность автокодировщика, который создает разреженный автокодер.
Это просто добавление штрафа L1 к функции потерь, которая заставляет большинство весов равняться 0.
3.6.6. Генеративные состязательные сети
Генеративные состязательные сети (Generative adversarial networks - GAN) [Goo + 14a] - это неконтролируемый метод, который структурирует процедуру обучения как игру с нулевой суммой. В методике используются две нейронные сети, называемые генератором и дискриминатором. Генератор предоставляет сгенерированный пример для дискриминаторной сети, часто взятый из скрытого пространства или распределения. Дискриминатор должен различать, является ли предоставленный пример сгенерированным (фальшивым) примером или реальным примером из набора данных / распределения.
Иллюстрация GAN показана на рис. 3.25.
[image:]
Рис. 3.25: Иллюстрация генерирующей враждебной сети
Во время обучения дискриминатору предоставляются как истинные, так и сгенерированные примеры. Дискриминатор и генератор обучаются совместно, цель генератора - увеличить ошибку дискриминатора, а цель дискриминатора - уменьшить его ошибку. Это связано с минимаксным решающим правилом, используемым в статистике и теории принятия решений в играх с нулевой суммой. Этот метод использовался как метод регуляризации, так и способ генерирования синтетических данных.
Для генератора G и дискриминатора D целевая функция определяется выражением:
minGmaxD Ex∼Pr [log (D (x))] + Ex∼Pg [log (1 − D (x~))], (3.61)
где Pr и Pg представляют распределение реальных данных и сгенерированное распределение данных, соответственно, и x~ = G (z), где z берется из распределения шума, такого как распределение Гаусса.
GAN чаще используются в компьютерном зрении, а не в НЛП. Например, к изображению можно добавить некоторое количество гауссовского шума, сохранив при этом общую структуру и смысл содержимого изображения. Предложения обычно отображаются в дискретном пространстве, а не в непрерывном пространстве, поскольку слово является дискретным (присутствует или нет), где шум не может быть легко применен без изменения значения. Однако в [Gul + 17] была реализована форма моделирования языка на уровне символов с использованием скрытого вектора для генерации 32 векторов горячих символов через сверточную нейронную сеть.
3.7. Соображения относительно структуры
Большинство обсуждаемых архитектурных и алгоритмических соображений уже реализованы в средах глубокого обучения с поддержкой ЦП и ГП. Многие различия связаны с языком реализации, целевыми пользователями и абстракциями. Самый распространенный язык реализации C++ с интерфейсом Python. Целевые пользователи могут широко варьироваться, и с этим изменением решения по абстракциям. Ключевой абстракцией является состав глубоких сетей.
Ранние абстракции фокусировались на слоях как блоках вычислений, которые можно было связать вместе, в то время как более современные фреймворки полагаются на подход с использованием вычислительных графов.
3.7.1. Абстракция уровня
Ранее мы кратко представили концепцию абстракции уровня, называя операцию линейного преобразования «линейным слоем». По идее, мы можем продолжить абстракцию уровня, чтобы включить все части нейронной сети, представив MLP на рис. 3.8 в виде трех слоев с одним скрытым слоем, как показано на рис. 3.26.
[image:]
Рис. 3.26: Многослойное представление MLP
Обратите внимание, что, хотя мы представили входы, нелинейности и выходные данные в виде слоев, это все еще одна сеть скрытых слоев.
Это упрощает разделение нейронной сети на логические блоки, которые можно составлять вместе. Фреймворки раннего глубокого обучения использовали этот подход для создания нейронных сетей. Можно создать любой уровень, реализовав минимальный набор функций, а именно шаг прямого и обратного распространения. Слои связаны в нейронную сеть.
Эта абстракция полезна при построении стандартных нейронных сетей с определенным поведением и является обычным подходом для фреймворков. Довольно просто рассуждать о взаимодействии слоев и давать гарантии относительно вычислительных требований. Обратной стороной этого подхода, как мы увидим, является то, что абстракция уровня становится сложной при работе со сложными сетевыми структурами. Например, если нам нужны рекурсивные соединения в сети, мы обычно должны реализовать все рекуррентные вычисления в одном блоке уровня (мы рассмотрим это подробнее в главе 7).
3.7.2. Вычислительные графы
Многие фреймворки с тех пор перешли от абстракции слоев к вычислительным графам. Подход с использованием вычислительного графа по своей концепции аналогичен абстрактным деревьям символов (AST) в компиляторах. Граф зависимости входов и выходов может быть представлен символами в виде дерева. Это позволяет компилятору генерировать инструкции по сборке, связывающие библиотеки и функции для исполняемой модели. Данные проходят через AST на основе зависимостей, представленных на графике.
В глубоком обучении вычислительный граф - это ориентированный граф, который определяет порядок вычислений. Узлы графа соответствуют операциям или переменным. Входы конкретного узла в граф - это зависимости, присутствующие в вычислительном графе. Впоследствии процесс обратного распространения можно легко определить, выполнив операции в обратном порядке, от которого они были вычислены на этапе прямого распространения. Пример расчетного графа нейронной сети показан на рис. 3.27.
[image:]
Рис. 3.27: Иллюстрация трехслойной нейронной сети с соответствующим графом обратных вычислений. Обратите внимание на то, как некоторые операции все еще могут быть программно скомбинированы для оптимизации (например, Addmm объединяет сложение и умножение в одну операцию). (A) Иллюстрация трехуровневой нейронной сети с сигмоидальными функциями активации и выходом softmax на 10 классов. (b) Вычислительный граф, построенный из сети, показанной на (a)
3.7.3. Автоматическое дифференцирование в обратном режиме
Подход с использованием вычислительных графов не только удобен для сложных функций, но и может быть расширен, чтобы позволить более простые градиентные аппроксимации в сложной нейронной сети. Вычисление градиента занимает центральное место в нейронных сетях. Одна из самых сложных частей программирования глубоких нейронных сетей - вычисление градиента для конкретного слоя или операции. Однако основанный на графах подход к глубокому обучению позволяет эффективно и автоматически вычислять градиенты в обратном режиме по вычислительному графу.
Вычислительные графики значительно упрощают использование методов автоматического дифференцирования в обратном режиме. Автоматическое дифференцирование (AD) [GW08] - это метод, используемый для численного вычисления производной функции. AD использует концепцию, согласно которой в компьютерах все математические вычисления выполняются как последовательность основных математических операций (сложение, вычитание, умножение, exp, log, sin, cos и т. д.).
Подход AD использует цепное правило дифференцирования для разложения функции на дифференциалы для каждой базовой операции в функции. Это позволяет автоматически и точно применять производные (с точностью до теоретической производной). Этот подход, как правило, прост в реализации, что позволяет значительно упростить реализацию сложных архитектур.
Алгоритм обратного режима AD [Spe80] является подходом к AD для глубокого обучения, поскольку он различает одну скалярную потерю. Операцию прямого распространения можно увидеть через вычислительный граф. Этот график можно точно разложить на примитивные операции, и во время обратного прохода можно вычислить градиент для вывода относительно скалярной ошибки.
3.7.4. Статические вычислительные графы
Статические вычислительные графы - это графы, которые были созданы со статическим представлением памяти. Статическая структура позволяет оптимизировать граф перед его вычислением, обеспечивая параллельные вычисления и оптимальную последовательность операций.
Например, объединение определенных операций может сократить время, необходимое для ввода-вывода памяти или эффективной оптимизации вычислений для набора графических процессоров, что может улучшить общую производительность. Эти предварительные затраты на оптимизацию выгодны, когда есть ограничения ресурсов, такие как встроенные приложения, или, когда сетевая архитектура относительно жесткая, поскольку она многократно выполняет один и тот же граф с небольшой изменчивостью входных данных.
Одним из недостатков статических вычислительных графов является то, что после их создания их нельзя изменить. Любые модификации устранят потенциальные преимущества применяемой стратегии оптимизации.
3.7.5. Динамические вычислительные графы
В динамических вычислительных графах используется другой подход, в котором операции вычисляются динамически во время выполнения. Это полезно в ситуациях, когда вы заранее не знаете, какими будут вычисления или где мы хотели бы выполнить различные вычисления для заданных точек данных. Ярким примером этого являются рекурсивные вычисления в рекуррентных нейронных сетях, которые основаны на входных данных временной последовательности часто переменной длины. Динамическое вычисление часто желательно в приложениях NLP, где длина предложений различается, и аналогично в ASR с переменной длиной аудиофайлов.
Каждый из этих подходов имеет компромиссы, во многом аналогичные сравнению языков программирования с динамической типизацией и языками со статической типизацией. Два текущих примера каждого из этих подходов - это TensorFlow [Aba + 15] и PyTorch [Pas + 17]. Tensor Flow опирается на статические вычислительные графы, в то время как PyTorch использует динамические вычислительные графы.
3.8. Практический пример
В этом разделе мы применим концепции этой главы к общему набору цифровых данных Free Spoken Digit Dataset5) (FSDD). FSDD - это коллекция из 1500 записей разговорных цифр 0–9 от 3 говорящих. Увеличиваем количество файлов за счет увеличения данных. Мы обсудим это в следующем разделе.

5) https://github.com/Jakobovski/free-spoken-digit-dataset.

Произносимые слова относительно короткие (обычно менее 1,5 с). В необработанном виде звук представляет собой одну серию отсчетов во временной области, однако обычно более полезно преобразовать ее в частотную область с помощью БПФ. Мы конвертируем каждый аудиофайл в спектрограмму logMel.
Спектрограмма показывает особенности в двумерном представлении с интенсивностью частоты в определенный момент времени. Эти представления будут обсуждаться более подробно в гл. 8. Набор образцов спектрограмм logMel из набора данных FSDD показан на рис. 3.28.
3.8.1. Программные инструменты и библиотеки
В этих разделах мы будем использовать PyTorch для нашего примера кода. Мы обнаружили, что код, используемый для PyTorch, легко смешивается с Python, что упрощает сосредоточение внимания на концепциях глубокого обучения, а не на синтаксисе, связанном с другими фреймворками.
В дополнение к PyTorch мы также используем librosa для обработки и увеличения звука.
[image:]
Рис. 3.28: Пример FSDD, показывающий спектрограммы logMel для произносимых цифр
3.8.2. Исследовательский анализ данных (EDA)
Исходный набор данных FSDD содержит 1500 примеров без специального набора для проверки или тестирования. При рассмотрении глубокого обучения это относительно небольшое количество примеров, поэтому мы масштабируем набор данных с помощью увеличения данных. Мы сосредотачиваемся на двух типах увеличения времени растяжения и смещения высоты тона. Растяжение времени либо увеличивается, либо уменьшает длину файла, в то время как смещение высоты тона перемещает частоты выше или ниже. Для растяжения по времени мы перемещаем файл на 25% быстрее или медленнее, а с изменением высоты тона мы смещаемся вверх или вниз на полшага. Каждая их комбинация применяется к каждому файлу, что дает 13 500 примеров, что означает 9-кратное увеличение объема данных.
1 samples , sample rate = librosa . load (file path)
2 for ts i n [0.75 ,1 ,1.25]:
3 for ps i n [−1,0,+1]:
4 samples new = librosa . effects . time stretch (samples , rate=ts)
5 y new = librosa . effects . pitch shift (samples new ,
 sample rate , n steps=ps)

Описанные до сих пор нейронные сети могут принимать только входные данные фиксированной длины. Временной характер речи затрудняет это, поскольку некоторые файлы длиннее других. Чтобы смягчить это ограничение, мы выбрали отключение всех файлов до максимальной продолжительности 1,5 с. Это позволяет нам работать с фиксированным представлением для всех файлов. Это также помогает при пакетной обработке, поскольку все файлы в пакете обычно должны быть одинаковой длины для повышения эффективности вычислений.
После увеличения общего объема данных и ограничения длины мы случайным образом разделились на наборы для обучения, проверки и тестирования. 80% данных используется для обучения, 10% для проверки и 10% для тестирования.
Мы используем librosa для получения спектрограммы logMel с примененными 128 фильтрами mel (обычно < 40 все еще в порядке)
1 max length = 1.5 # Max length in seconds
2 samples , sample rate = librosa . load (file path)
3 short samples = librosa . util . fix length (samples , sample rate ∗
max length)
4 melSpectrum = librosa . feature . melspectrogram (short samples .
astype (np . float16) , sr=sample rate , n mels=128)
5 logMelSpectrogram = librosa . power t o db (melSpectrum , ref=np.max)

Помимо сохранения аудиофайлов в необработанном формате wav, мы также сохраняем их в виде массивов numpy. Загрузка массивов numpy выполняется намного быстрее во время обучения, особенно если мы применяем какие-либо дополнения. Входные данные будут масштабированными входными пикселями из спектрограмм. Размерность входных данных будет d × t, где d - количество извлеченных объектов mel, а t - количество временных шагов. При загрузке мы нормализуем спектрограмму logMel, чтобы она находилась в диапазоне от 0 до 1. Преобразование диапазона данных из диапазона мощности в децибелах [-80,0] в непрерывный в диапазоне [0,1] устраняет необходимость для сети изучать более высокие веса на ранних этапах обучения. Обычно это делает тренировку более стабильной, поскольку меньше сдвига внутренней ковариаты.
Теоретически масштабирование и нормализация не обязательно требуются в нейронных сетях. Любая нормализация может быть преобразована путем изменения весов и смещения, связанных с входными данными, для достижения того же результата. Однако некоторые методы градиентного спуска очень чувствительны к масштабированию, стандартизация входных данных снижает необходимость, чтобы сеть узнала экстремальные значения выбросов. Обычно это сокращает время обучения, поскольку снижает зависимость от масштаба начальных весов.
Следующее, что мы хотели бы найти в наших данных, - это дисбаланс класса или набора данных. Если есть существенный дисбаланс классов, мы хотели бы убедиться, что у нас есть репрезентативная выборка по всем нашим наборам данных. На рис. 3.29 показана гистограмма для разбиения нашего набора данных. Из гистограмм мы видим, что каждый класс хорошо представлен в каждом из наших наборов, и что все классы относительно сбалансированы по количеству примеров для каждого класса. Обычно это верно для академических наборов данных, но на практике так бывает нечасто.
Теперь, когда у нас есть хорошее представление наших данных, мы покажем пример задачи контролируемой классификации с нейронной сетью, а также метод обучения без учителя с использованием автоэнкодера.
3.8.3. Обучение с учителем
Контролируемый классификатор сначала требует от нас определения функции ошибок, которую мы оптимизируем.
Мы используем потерю кросс-энтропии для нашей модели с выходом softmax. На практике журнал softmax используется для предотвращения потери значимости, если вероятность одного класса становится очень низкой.
Второй шаг - определить нашу сетевую архитектуру. Архитектура часто получается экспериментальным путем с учетом вычислительных ресурсов и представительной мощности. В нашем примере мы изначально выбираем небольшую сеть с двумя скрытыми слоями со 128 нейронами в каждом слое с функцией активации ReLU после каждого скрытого слоя. Эта сеть изображена на рис. 3.30.
[image:][image:]
[image:]

Рис. 3.29: Гистограммы для наборов для обучения, проверки и тестирования FSDD. Каждый пример имеет озвученную метку от 0 до 9. Распределение между классами примерно одинаково во всех наборах данных.
Определение сети PyTorch показано ниже:
1 import torch.nn as nn
2
3 # PyTorch Network Definition
4 class Model (nn.Module) :
5 def init (self):
6 super (Model , self).init ()
7 self.fc1 = nn . Linear (3072 , 128)
8 self.fc2 = nn . Linear (128 , 128)
9 self.fc3 = nn . Linear (128 , 10)
10
11 def forward (self , x) :
12 x = x . view((−1, 3072)) # Converts2Ddatato1D
13 h = self.fc1 (x)
14 h = torch.relu (h)
15
16 h = self.fc2 (h)
17 h = torch.relu (h)
18
19 h = self.fc3 (h)
20 out = torch.log softmax (h , dim=1)
21 return out

В определении сети нам нужно только создать экземпляры изученных слоев, а функция пересылки затем определяет порядок вычислений, которые будут выполняться.
[image:]
Рис. 3.30: 3-х слойная нейронная сеть для классификации FSDD. Слой ReLU используется в качестве функции активации после первых двух скрытых слоев и преобразования log-softmax после выходного слоя. Линейные слои ожидают, что входные данные будут представлены в одномерной форме. Таким образом мы включаем вызов функции «view», которая преобразует входные данные из двухмерных входных данных в одномерные.6)
Градиенты связаны с каждым изучаемым параметром, таким образом, для каждого шага в прямом проходе память резервируется для градиента на этом шаге. После передачи данных через нашу сеть у нас будет выходной тензор размера [n, 1,1,10]. Затем мы можем вычислить наши потери, используя нашу метрику ошибок, кросс-энтропию. Эта функция принимает два тензора одинакового размера и вычисляет скалярные потери. Обратная функция on the loss затем вычисляет градиент всех параметров, которые способствовали потере, в обратном порядке, используя обратное распространение. После выполнения обратного прохода мы вызываем единственный шаг для нашего оптимизатора, который делает один шаг в направлении градиента (относительно нашей скорости обучения и других гиперпараметров). Мы повторяем этот процесс для всего набора данных по эпохам. Код Python для обучающей функции показан ниже.
1 import torch.optim as optim
2 use cuda = torch.cuda.is available () # Run on GPU if available
3
6) Note, PyTorch can still train in mini-batch mode. The view function converts the input tensor into the dimensions [n,1,1,3072], where n is the mini-batch size.
4 # Neural Network Training in PyTorch
5 model = Model ()
6 model.train ()
7 if use cuda :
8 model.cuda ()
9 optimizer = optim.Adam(model.parameters() , lr = 0.01)
10 n epoch = 40
11 for epoch in range (nepoch) :
12 for data, target in train loader :
13 # Get Samples
14 if use cuda :
15 data, target = data.cuda () , target.cuda ()
16
17 # Clear gradients
18 optimizer.zero grad ()
19
20 # Forward Propagation
21 y pred = model(data)
22
23 # Error Computation
24 loss = torch.cross entropy (y pred , target)
25
26 # Backpropagation
27 loss.backward ()
28
29 # Parameter Update
30 optimizer.step ()

Этот фрагмент кода не является полным, поскольку он не включает оценку валидации в процессе обучения. Более надежный пример приведен в прилагаемой записной книжке. Читателю предоставляется возможность экспериментировать с различными конфигурациями гиперпараметров в упражнениях. В процессе обучения мы сохраняем копию модели с лучшей потерей валидации. Эта модель используется для вычисления ошибки на тестовом наборе. Кривые обучения и результаты тестовой выборки показаны на рис. 3.31.
Мы можем дополнительно изменить нашу сеть, включив в нее некоторые методы регуляризации и функции активации, которые мы обсуждали ранее, такие как пакетная нормализация, выпадение и ReLU. Включение этих функций представляет собой простую модификацию архитектуры модели, описанной ранее. График обучения для этой модели также представлен на рис. 3.31.
1 # PyTorch Network Definition
2 class Model (nn.Module) :
3 def init (self):
4 super (Model , self).init()
5 sel. fc1 = nn.Linear (3072 , 128)
6 self.bc1 = nn.BatchNorm1d (128)
7
8 self.fc2 = nn.Linear (128 , 128)
9 self.bc2 = nn.BatchNorm1d (128)
10
11 self.fc3 = nn.Linear (128 , 10)
12
13 def forward (self , x) :
14 x = x.view((−1, 3072))
15 h = self.fc1 (x)
16 h = self.bc1 (h)
17 h = torch.relu (h)
18 h = F.dropout (h, p=0.5, training=self . training)
 #Disabled during evaluation
19
20 h = self.fc2 (h)
21 h = self.bc2 (h)
22 h = torch.relu (h)
23 h = F.dropout (h, p=0.2 , training=self.training)
 #Disabled during evaluation
24
25 h = self.fc3 (h)
26 out = torch.log softmax (h , dim=1)
27 return out

3.8.4. Обучение без учителя
Для примера без учителя мы обучим простой автоэнкодер на наборе данных FSDD. Этот автоэнкодер изучает низкоразмерное кодирование входных данных, которое декодер может создавать в примерах, а архитектура, которую мы будем использовать в этом примере, показана на рис. 3.32.
Поскольку это неконтролируемая задача, мы будем использовать функцию ошибок MSE, сравнивая наши входные данные с выходными данными нашего декодера. Выход нашей сети должен быть того же размера, что и наш вход, d = 3072, поэтому последний уровень нашей сети должен гарантировать, что размерность соответствует входу.
Сетевая архитектура - это очень простое определение с четырьмя линейными уровнями, изученными для каждого из кодировщика и декодера. Определение автоэнкодера PyTorch показано ниже.
1 import torch.nn as nn
2 import torch.nn.functional as F # In place operations for nonlinearities
3
4 # PyTorch Network Definition
5 class autoencoder (nn.Module) :
6 def init (self):
7 super (autoencoder, self).init ()
8
9 self.efc1 = nn.Linear (3072 , 512)
10 self.efc2 = nn.Linear (512 , 128)
11 self.efc3 = nn.Linear (128 , 64)
12 self.efc4 = nn . Linear (64 ,64)
13
14 self. fc1 = nn.Linear (64 , 64)
15 self.dfc2 = nn Linear (64 , 128)
16 self.dfc3 = nn Linear (128 , 512)
17 self.dfc4 = nn.Linear (512 , 3072)

[image:][image:]

Рис. 3.31: Кривая обучения для прогона за 40 эпох с двумя различными определениями архитектуры. Обратите внимание на стабильность регуляризованной архитектуры в (б) по сравнению с (а). а) Кривая обучения для 40-эпохального прогона сети с двумя скрытыми слоями, показанная на рис. 3.30. На тестовом наборе наиболее эффективная модель проверки дает потерю 2.3050 с точностью 10%, статистически такой же, как и при случайном угадывании. (b) Кривая обучения для 40-эпохального прогона сети с двумя скрытыми слоями, показанная на рис. 3.30, с включением пакетной нормализации и исключения. На тестовом наборе лучший результат: модель проверки дает потерю 0,0825 с точностью 98%
18
19 def forward (self , x) :
20 # Encoder
21 h = F.relu (self . efc1 (x))
22 h = F.relu (self . efc2 (h))
23 h = F.relu (self . efc3 (h))
24 h = self.efc4 (h)
25
26 # Decoder
27 h = F. relu (self.dfc1 (h))
28 h = F. relu (self.dfc2 (h))
29 h = F. relu (self.dfc3 (h))
30 h = self dfc4 (h)
31 out = F. tanh (h)
32
33 return out

[image:]
Рис. 3.32: Автоэнкодер для набора данных FSDD. Примечание: размеры слоя определяют выходной размер этого слоя.
Алгоритм обучения очень похож на тот, который был представлен для примера классификации. Мы используем оптимизатор Adam и добавляем термин уменьшения веса для регуляризации. Кроме того, поскольку мы будем использовать входные данные того же размера, что и выходные данные, мы переместим преобразование 2D в 1D за пределы модели. Остальной алгоритм такой же, как показано ранее. Алгоритм обучения представлен ниже.
1 import torch.optim as optim
2 import torch.nn.functional as F
3
4 # Neural Network Training in PyTorch
5 model = autoencoder ()
6 optimizer = optim.Adam(
7 model.parameters (), lr =learning rate , weight decay =1e−5)
8
9 for epoch in range (n epoch) :
10 for data, in train loader:
11 # Get samples
12 input = data. view(−1,3072) # We will reuse the
 formatted input as our target
13
14 # Forward Propagation
15 output = model (input)
16
17 # Error Computation
18 loss = F.mse loss (output , input)
19
20 # Clear gradients
21 optimizer.zero grad ()
22
23 # Backpropagation
24 loss.backward ()
25
26 # Parameter Update
27 optimizer.step ()

[image:]
Рис. 3.33: Выход автоэнкодера через n эпох на данных обучения. Обратите внимание, как горизонтальные линии спектрограммы начинают формироваться по-разному для разных входов. (а) Восстановление автоэнкодером своего входа через 1 эпоху. (б) Восстановление автоэнкодером его входа через 100 эпох.
При рассмотрении восстановленных входных данных мы замечаем, что они кажутся менее резкими, чем примеры, показанные на рис. 3.28. В основном это связано с функцией потерь MSE. Поскольку он вычисляет квадрат ошибки, он стремится подтянуть все значения к среднему, отдавая предпочтение среднему по определенным областям ввода.
3.8.5. Классификация с неконтролируемыми функциями
RBM изучает неконтролируемые функции в процессе обучения. Как только эти неконтролируемые функции изучены, мы можем создать низкоразмерный маркированный набор данных, используя эти функции для использования в контролируемом классификаторе. В нашем примере мы обучаем RBM, а затем используем изученные функции в качестве входных данных для классификатора логистической регрессии.
Мы можем определить RBM с помощью следующего кода:
1 class RBM(nn.Module) :
2 def init (self , nvis =3072, nhin =128, k=5) :
3 super (RBM, self).init ()
4 self.W = nn.Parameter (torch.randn (nhin , nvis) ∗1e−2)
5 self.vbias = nn.Parameter (torch.zeros (nvis))
6 self.h bias = nn .Parameter (torch . zeros (nhin))
7 self.k = k
8
9 def sample from p(self, p) :
10 return F. relu (torch . sign (p − Variable (torch . rand (p.size ()))))
11
12 def vtoh (self ,v) :
13 ph = F.sigmoid (F.linear (v , self.W, self.h bias))
14 sample h = self.sample from p(p h)
15 return ph , sample h
17 def htov (self ,h) :
18 pv = F.sigmoid (F.linear (h , self .W. t () , self.v bias))
19 sample v = self.sample from p(pv)
20 return pv, sample v
21
22 def forward (self ,v) :
23 pre h1, h1 = self.vtoh(v)
24
25 h = h1
26 for in range (self .k):
27 prev, v = self . htov(h)
28 preh, h = self . vtoh(v)
29
30 return v,v
31
32 def free energy (self ,v) :
33 vbias term = v.mv(self .vbias)
34 wxb = F.linear (v , self .W, self.h bias)
35 hidden term = wx b.exp ().add (1).log ().sum (1)
36 return (− hidden term − vbias term).mean ()

Обучаем модель с Адамом. Вот пример кода для этого:
1 rbm = RBM(n vis =3072, n hin =128, k=1)
2
3 train op = optim.Adam (rbm.parameters () , 0.01)
4 for epoch in range (epochs):
5 loss = []
6 for , (data , target) in enumerate (train loader):
7 data = Variable (data . view(−1, 3072))
8 sample data = data . bernoulli ()
9
10 v , v1 = rbm (sample data)
11 loss = rbm . free energy (v) − rbm . free energy (v1)
12 loss . append (loss . data [0])
13 train op . zero grad ()
14 loss . backward ()
15 train op . step ()

После обучения нашим функциям RBM мы можем создать классификатор логистической регрессии, чтобы классифицировать наши примеры на основе неконтролируемых функций, которые мы изучили.
1 from sklearn . linear model import LogisticRegression
2
3 clf = LogisticRegression ()
4 clf . fit (train features , train labels)
5 predictions = clf . predict (test features)

Классификатор обеспечивает точность 71,04% для набора данных, 128-мерных объектов из RBM. Матрица неточностей для классификатора представлена ​​на рис. 4.34.
[image:]
Рис. 3.34: Матрицы неточностей для классификатора логистической регрессии с функциями RBM в наборе данных FSDD. (а) Матрица неточностей для FSDD. (б) Нормализованная матрица неточностей для FSDD

3.8.6. Результаты
Объединив выводы из предыдущих разделов, мы сравним методы классификации в таблице 3.1.
3.8.7. Упражнения для читателей и практиков
Вот некоторые другие интересные задачи, которые читатели и практики могут попробовать самостоятельно:
Таблица 3.1: Характеристики сквозного распознавания речи на тестовом наборе FSDD. Высвеченный результат указывает на лучшую производительность
	Подход
	Точность

	2-х слойный MLP
	10.38

	2-слойный MLP (с регуляризацией)
	98,44

	RBM + логистическая регрессия
	71,04

1. Каков эффект обучения классификатора FSDD с каждой из скоростей обучения [0,001,0,1,1,0,10]? Какой эффект при переключении метода оптимизации?
2. Каков результат скорости обучения 0,1 для автоэнкодера FSDD?
3. Как бы изменилась архитектура, если бы мы захотели изучить набор разреженных функций вместо низкоразмерного кодирования рукописных цифр?
4. Как размер партии влияет на процесс обучения? Влияет ли это на скорость обучения?
5. Какие дополнительные дополнения данных можно применить к звуку, чтобы система стала более надежной?
6. Обучите классификатор кодировке обученного автокодировщика в качестве признаков. Как точность сравнивается с контролируемой моделью?
7. Измените автокодер на вариационный автокодировщик. Улучшает ли это видимое качество сгенерированного вывода? Изменяйте входные данные декодера, чтобы понять изученные функции.
8. Расширьте RBM, чтобы создать сеть глубоких убеждений для классификации набора данных FSDD.

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.emf

image22.emf

image23.emf

image24.emf

image25.emf

image26.emf

image27.emf

image28.emf

image29.emf

image30.emf

image31.emf

image32.emf

image33.emf

image34.emf

image35.emf

image36.emf

image37.emf

image1.emf

image2.emf

image3.emf

image4.emf

image5.emf

